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A finite element scheme is devised for the solution of nonlinear time-dependent
exterior wave problems. The two-dimensional nonlinear scalar (Klein–Gordon) wave
equation is taken as a model to illustrate the method. The governing equation is first
discretized in time, leading to a time-stepping scheme, where a nonlinear exterior
elliptic problem has to be solved in each time step. An artificial boundaryB is intro-
duced, which bounds the computational domainÄ, and a simple-iteration procedure
is used to linearize the problem in the infinite domain outsideB. This enables the
derivation of a Dirichlet-to-Neumann boundary condition onB. Finite element dis-
cretization and Newton iteration are finally employed to solve the problem inÄ. The
computational aspects of this method are discussed. Numerical results are presented
for the nonlinear wave equation, whose solutions may blow up in a finite time under
certain conditions, and it is shown that the behavior of the solution predicted by
theory is captured by the scheme.c© 1998 Academic Press

Key Words:nonlinear waves; Dirichlet-to-Neumann (DtN); finite element; exterior
problems.

1. INTRODUCTION

Nonlinear waves in unbounded media are encountered in a variety of applications
[1–3]. The nonlinearity may originate from the material constitutive relations, from the large
amplitude of the motion, or from the presence of a free boundary. In most cases, the nonlin-
ear governing equations are time-dependent; pure time-harmonic waves are not possible in
the nonlinear regime. For this and other reasons, the theoretical and computational analysis
of nonlinear wave problems is typically complicated. The computational treatment of the
unboundedness of the problem domain is an additional difficulty which must be dealt with.

Most numerical methods for unbounded domain problems [4] are not directly desig-
ned to account for nonlinearities in the exterior domain. In fact, some methods, like
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FIG. 1. A typical setup of the DtN method for exterior problems.

boundary-element schemes [5]. Dirichlet-to-Neumann (DtN) finite-element schemes [6],
and some infinite-element schemes [7], are based on an exact solution of the governing
equations in the far field, and such an exact solution is not available with nonlinearities
which extend to infinity.

In this paper we devise a new DtN-type numerical method for nonlinear exterior wave
problems. The DtN finite element method was originally developed for the solution of
linear elliptic problems in infinite domains [6, 8–10] and can be summarized as follows.
First, a simple-shaped artificial boundaryB is introduced, which divides the original infinite
domain into two domains: a finite computational domainÄ and an infinite residual domain
D (see Fig. 1). Then, by analyzing the problem inD, an exact relation onB, which is
based on the associated Dirichlet-to-Neumann map, is derived. This relation is used as a
boundary condition onB (called the DtN boundary condition) to obtain a new well-posed
problem inÄ. This new problem is equivalent to the original infinite-domain problem in
that both problems have the same solution inÄ. Finally, the new problem inÄ is solved by
the finite-element method.

In the context of linear wave problems, the DtN condition onB is a perfectly nonreflecting
boundary condition [11]. Analysis and some improvements of the DtN method can be found
in [12–17]. Closely related schemes for various problems and configurations were devised
in [18–22]. Other types of schemes that involve exact treatment of the far field have also
been used [23–25].

In [26], the DtN method was extended to treat the time-dependent (hyperbolic) wave
equation, still in the linear regime. Recently, several DtN-type schemes have been proposed
for a class of nonlinear elliptic problems [27], of the form∇2u+ f (u) = 0 (cf. also [23]).
Here, we combine some of the ideas of [26] and [27] to obtain a new scheme for nonlinear
time-dependent wave problems. We do this in the context of a model problem, governed
by the two-dimensional nonlinear scalar (Klein–Gordon) equation [28]. This equation has
important applications in quantum physics. It also describes waves in a membrane lying on
a nonlinear elastic foundation. However, more importantly, it serves as a relatively simple
model for nonlinear wave problems which helps to bring to light some theoretical issues
and typical computational difficulties.

Following is the outline of the paper. In Section 2 we state the model problem under
consideration. In Section 3 we discretize the nonlinear wave equation in time, using the
two-parameter implicit Newmark family of time integration schemes. This leads to a time-
stepping scheme, where a nonlinear exterior elliptic problem has to be solved in each time
step. In Section 4 we introduce an artificial boundaryB which bounds the computational
domainÄ. Then we apply a simple-iteration procedure to repeatedly linearize the elliptic



           

NONLINEAR EXTERIOR WAVE PROBLEMS 243

problem in the infinite domainD outsideB. Once a linear elliptic problem is defined inD,
it is possible to derive an exact DtN boundary condition onB; this is done in Section 5.
In Section 6 we discuss the finite-element formulation inÄ. The whole solution procedure
is summarized and commented on in Section 7. In Section 8 we present some numerical
results, check their accuracy, and compare their global behavior to that predicted by theory
[28]. We conclude with some remarks in Section 9.

2. STATEMENT OF THE PROBLEM

We consider the two-dimensional infinite domainR outside an obstacle with boundary
0. InR, the nonlinear version of the Klein–Gordon equation governs [28]:

ü− c2∇2u = f (u). (1)

Hereu(x, t) is the unknown wave function,x is the position vector in space,t is time,c
is a given constant wave speed, andf (u) is a given nonlinear function. A superposed dot
denotes differentiation with respect tot . We note in passing that whenf (u) = −ω2

0u, (1)
becomes the linear Klein–Gordon equation.

The obstacle boundary0 is divided into two parts:0 = 0g ∪ 0h. On0g, a Dirichlet
condition is given, whereas on0h, a Neumann condition is given:

u = g on0g (2)
∂u

∂ν
= h on0h. (3)

Here∂/∂ν is the normal derivative on0h, andg andh are given functions. Initial conditions
are given foru andu̇:

u(x, 0) = u0(x), u̇(x, 0) = v0(x). (4)

Hereu0 andv0 are given functions with compact support. At infinity the solution is bounded.
Since the differential operator in (1) is hyperbolic, there is no need in a “radiation condition”
at infinity to complete the statement of the problem, even though the solution can be shown
to satisfy such a condition [29].

3. TIME DISCRETIZATION

The first step in the proposed numerical method is todiscretize the problem in time.
To fix ideas we choose the Newmark family of time-integration schemes, although other
algorithms can be considered as well. Let1t be the (constant) time-step interval, and lettn
be the time aftern time steps. Also, letun, vn, andan be the approximations ofu, u̇, andü
at timetn. The Newmark method applied to Eq. (1) consists of the three equations

an+1− c2∇2un+1 = f (un+1) (5)

un+1 = un +1tvn + (1t)2

2
[(1− 2β)an + 2βan+1] (6)

vn+1 = vn +1t [(1− γ )an + γan+1]. (7)

Here 0< β ≤ 0.5 and 0≤ γ ≤ 1 are two parameters which determine the stability and
accuracy properties of the scheme. We are interested only inimplicit schemes, and therefore
we exclude the caseβ = 0.
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After some algebra, Eqs. (5)–(7) yield the recursive formulae

(1− (1t)2βc2∇2)un+1 = un +1tvn + (1t)2

2
[(1− 2β)an + 2β f (un+1)] (8)

an+1 = 1

2β

[
2

(1t)2
(un+1− un −1tvn)− (1− 2β)an

]
(9)

vn+1 = vn +1t [(1− γ )an + γan+1]. (10)

Note that (8) is an elliptic partial differential equation forun+1. The time-discrete version of
the boundary conditions (2) and (3) as well as the boundedness condition at infinity must be
added to (8) to complete the statement of the problem. From an implementational viewpoint
it is beneficial to write these equations in a predictor–corrector form, namely:

Prediction:

ũn+1 = un +1tvn + (1t)2

2
(1− 2β)an (11)

ṽn+1 = vn +1t (1− γ )an. (12)

Solution:

(1− (1t)2βc2∇2)un+1 = ũn+1+ (1t)2β f (un+1) (13)

un+1 = gn+1 on0g (14)

∂un+1

∂ν
= hn+1 on0h (15)

un+1 <∞ at infinity. (16)

Correction:

an+1 = 1

β(1t)2
(un+1− ũn+1) (17)

vn+1 = ṽn+1+ γ1tan+1. (18)

Thus, in addition to the updating performed in the prediction and correction phases, one
has to solve in each time step the elliptic problem (13)–(16) in the unbounded domainR.

To write (13) more concisely we define

α = (c1t
√
β
)−1
, f̃ (un+1) = −ũn+1− (1t)2β f (un+1). (19)

Then (13) becomes

α−2∇2un+1− un+1 = f̃ (un+1). (20)

4. LINEARIZATION VIA SIMPLE ITERATION

We now introduce a circular artificial boundaryB of radiusRwhich encloses the obstacle
and bounds the computational domainÄ. The infinite domain outsideB is denotedD, i.e.,
D = R−Ä (see Fig. 1).
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We employ a simple-iteration procedure to replace the nonlinear equation (20) inD by a
sequence of linear equations. The solutionun+1 in iterationi is denotedu(i )n+1. Equation (20)
is replaced by

α−2∇2u(i+1)
n+1 − u(i+1)

n+1 = f̃
(
u(i )n+1

)
in D. (21)

Sinceu(i )n+1 is known at thei + 1 iteration, the functionf̃ in (21) is just a given function of
x, and thus (21) is alinear elliptic equation. Also, the boundedness condition (16) is written
as

u(i+1)
n+1 <∞ at infinity (22)

Note that (21) replaces (20) only in the exterior domainD. In the computational domain
Ä, the governing equation remains the nonlinear equation (20).

5. DtN BOUNDARY CONDITION

Now we shall derive an exact boundary condition onB for u(i+1)
n+1 . This condition is

derived by finding a solution inD, which exactly satisfies Eqs. (21) and (22), as well as the
obvious condition

u(i+1)
n+1 = u(i+1)

n+1 (R, θ) onB. (23)

In the remainder of this section we shall omit the indicesn+ 1 and(i + 1) for brevity. We
shall also usef̃ to mean f̃ (u(i )n+1). Note that at the current iteratioñf is a known function.

The problem (21)–(23) is solved by the method of variation of parameters. We seek a
solution of the form

u(r, θ) =
∞∑

m=0

′
[Cm(r ) cosmθ + Dm(r ) sinmθ ]. (24)

The prime after the sum indicates that the termm= 0 is multiplied by a factor of 1/2. We
substitute (24) into (21) and for eachmwe equate the coefficients of cosmθ and sinmθ . This
results in the following uncoupled set of ordinary differential equations form= 0, 1, 2, . . .:

α−2

(
C′′m +

1

r
C′m −

m2

r 2
Cm

)
− Cm = f̃

c
m(r ) (25)

α−2

(
D′′m +

1

r
D′m −

m2

r 2
Dm

)
− Dm = f̃

s
m(r ). (26)

Here a prime denotes differentiation with respect tor . The functionsf̃
c
m(r ) and f̃

s
m(r ) are

respectively the cosine and sine coefficients in the Fourier decomposition of the function
f̃ . Also, substituting (24) into the boundary condition (23) results in

Cm(R) = 1

π

∫ 2π

0
cosmθ u(R, θ)dθ (27)

Dm(R) = 1

π

∫ 2π

0
sinmθ u(R, θ)dθ. (28)
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Equations (25)–(28) can be written in the general form

r 2y′′ + r y′ − (α2r 2+m2)y = f̂ (r ) (29)

y(R) = YR. (30)

The general solution of thehomogeneouscounterpart of (29) isAIm(αr ) + BKm(αr ),
whereIm andKm are the modified Bessel functions of the first and second kind. To satisfy
(22), the homogeneous solution must involve onlyKm and notIm. Imposing (30) in addition
yields the solution

yhom(r ) = YR
Km(αr )

Km(αR)
. (31)

Since (31) satisfies the homogeneous counterpart of (29) and the condition (30), we now
seek a particular solution which satisfies (29) and the homogeneous counterpart of (30).
This particular solution is obtained by deriving first the associated Green’s function. The
Green’s function is found to be [29]

ξ2Gm(r, ξ) =
{
φm(ξ)ψm(r )[Em(ξ)]−1; r ≤ ξ
ψm(ξ)φm(r )[Em(ξ)]−1; r ≥ ξ , (32)

where

φm(ξ) = Km(αξ) (33)

ψm(ξ) = Im(αξ)Km(αR)− Km(αξ)Im(αR) (34)

Em(ξ) = ψm(ξ)φ
′
m(ξ)− φm(ξ)ψ

′
m(ξ). (35)

Using this Green’s function, the particular solution is

yp(r ) =
∫ ∞

R
Gm(r, ξ) f̂ (ξ) dξ. (36)

The solution of (29) and (30) is the sum ofyhom in (31) andyp in (36). We are now able
to write the solution of (25)–(28) for the coefficientsCm(r ) andDm(r ). These expressions
are substituted in the Fourier series (24) and after some algebra we get the solutionu(r, θ)
in the domainD. The end result is

u(r, θ) = 1

π

∞∑
m=0

′ Km(αr )

Km(αR)

∫ 2π

0
cosm(θ − θ ′)u(R, θ ′) dθ ′

+α2
∞∑

m=0

′
∫ ∞

R
ξ2Gm(r, ξ)

(
f̃

c
m(ξ) cosmθ + f̃

s
m(ξ) sinmθ

)
dξ. (37)

We now differentiate both sides of (37) with respect tor and then setr = R. After some
algebra, and using the properties of the modified Bessel functions, we get

∂u

∂r
= −Mu+ H [ f̃ ] onB (38)

Mu =
∞∑

m=0

′
∫ 2π

0
km(θ − θ ′) u(R, θ ′) dθ ′ (39)
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km(θ − θ ′) = −α
π

K ′m(αR)

Km(αR)
cosm(θ − θ ′) (40)

H [ f̃ ](θ) = α2
∞∑

m=0

′
∫ ∞

R
Bm(ξ)

[
f̃

c
m(ξ) cosmθ + f̃

s
m(ξ) sinmθ

]
dξ (41)

Bm(ξ) = − Km(αξ)

Km(αR)

ξ

R
(42)

f̃
c
m(ξ) =

1

π

∫ 2π

0
cosmθ f̃ (ξ, θ)dθ, f̃

s
m(ξ) =

1

π

∫ 2π

0
sinmθ f̃ (ξ, θ)dθ.

(43)

Equation (38) is an exact Dirichlet-to-Neumann boundary condition onB, similar to the
one obtained in [26] in the linear case. It is exact with respect to Eqs. (21)–(23), although,
of course, it is not exact with respect to the original time-dependent nonlinear problem.
Two approximations which must be made in practice are the truncation of the sums in (39)
and (41) after a finite number of terms, and the numerical integration needed in (41); see
Section 7. The integral in (39) can be evaluated exactly, as is done in [6, 26].

If we now recover the indicesn+1 and(i +1), the DtN boundary condition (38) becomes

∂u(i+1)
n+1

∂r
= −Mu(i+1)

n+1 + H
[

f̃
(
u(i )n+1

)]
onB. (44)

Note thatH in (44) is a known function at the(i + 1) iteration.

6. FINITE-ELEMENT FORMULATION

At time stepn+ 1 and at simple-iteration(i + 1), the problem to be solved inÄ consists
of the nonlinear elliptic equation (20), the boundary conditions (14) and (15) on0, and the
DtN boundary condition (44) onB. This problem is solved by the Galerkin finite-element
method. The weak form of the problem is formally similar to that given in [26] in the linear
case. Finite-element discretization leads to the system of nonlinear algebraic equations

Kdn+1 = Fn+1(dn+1), (45)

where

K = K a + K b, Fn+1 = Fa
n+1+ Fb

n+1 (46)

K a
AB = a(NA, NB) (47)

K b
AB = b(NA, NB) (48)(

Fa
n+1

)
A = (NA, f̃ (un+1))−

∑
B∈ηg

(gn+1)B a(NA, NB) (49)

(
Fb

n+1

)
A
= (NA, H

[
f̃
(
u(i )n+1

)])
B. (50)

Here the following bilinear forms are used:

a(w, u) = α−2
∫
Ä

∇w · ∇u dÄ+
∫
Ä

wu dÄ (51)

b(w, u) = α−2
∫

B
wMu dB (52)
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(w, f ) =
∫
Ä

w f dÄ (53)

(w, H)B = α−2
∫

B
wH dB. (54)

In (47)–(50),A andB are indices corresponding to global node numbersA andB, andNA

is the finite element shape function associated with nodeA. In (49),ηg is the set of all nodes
on 0g, and(gn+1)B is the value of the functiongn+1 at nodeB on 0g. In (45), K is the
global stiffness matrix,d is the solution vector, andF is the load vector. We omit the index
(i + 1) from all the variables in (45)–(50) for brevity; however, in (50) we indicate thatH
is calculated based onu from the previous iteration, i.e.,u(i )n+1. The nonlinearity of (45) is
due to the dependence of the load vectorF on the solution vectord, through f̃ (un+1) in
(49).

The nonlinear algebraic system (45) is solved using Newton iterations. At Newton iter-
ation j + 1, the solution is updated via

d j+1 = d j +1d j , (55)

where the incremental vector1d j is found by solving the linear system of equations

K j
t 1d j = Rj . (56)

HereK j
t is the tangent stiffness matrix, andRj is the residual vector. They are given by

K j
t = K − ∂Fa

∂d
(d j ) (57)

Rj = F(d j )− Kd j . (58)

The last term on the right side of (57) can be expressed explicitly by[
∂Fa

∂d
(d j )

]
AB

≡ ∂Fa
A

∂dB
(d j ) =

∫
Ä

NA f̃
′
(∑

C

NCd j
C

)
NB dÄ. (59)

Thus, the tangent stiffness matrixK j
t is symmetric.

7. SOLUTION PROCEDURE

The entire solution procedure is summarized in Box 1. We now make some comments
on the computational aspects of this procedure.

Remark 1. This solution scheme consists ofthree loops: the time-step loop (indicated
by n), the simple-iteration loop (indicated byi ), and the Newton-iteration process which is
the innermost loop (indicated byj ). The convergence criterion for stopping either of the
latter two processes is based on evaluating the residual norms and comparing them to some
given tolerances.

Remark 2. The matrixK = K a + K b in (45), (46) remains constant during the time
stepping; only the right-hand sideFn+1 is changing. Thus,K has to be formed and factorized
only once, outside of the time-step loop. This also implies that the effort it requires is
marginal for an analysis with many time steps.

Remark 3. The computation ofH [ f̃ ] in (41) involves the computation of the Fourier
coefficients of the functioñf given by (19), forξ ≥ R. Thus, it is necessary to keep track
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BOX 1

General Solution Procedure for the Time-Dependent Nonlinear Exterior Wave Problem

∗ Time-step loop:n = 0, 1, 2, . . .
1. Compute the predicted valuesũn+1 andṽn+1 in Ä by using (11), (12).
2. Compute the predicted valuesũn+1 andṽn+1 at integration points inD by using

(11), (12).
3. u(0)n+1 ≡ ũn+1.
∗ Simple-iteration loop:i = 0, 1, 2, . . .

4. Use (41) to findH [ f̃ (u(i )n+1)] onB.
∗ Newton-iteration loop:j = 0, 1, 2, . . .

5. Perform a single Newton iteration: solve (56) and use (55) to update the
solution inÄ.

6. Check convergence. If converged,u(i+1)
n+1 in Ä is obtained; go to step 7.

∗ Next j
7. Use (37), with f̃ = f̃ (u(i )n+1), to findu(i+1)

n+1 at integration points inD.
8. Check convergence. If converged,un+1 is obtained; go to step 9.

∗ Next i
9. Correctan+1 andvn+1 in Ä by using (17), (18).
10.Correctan+1 andvn+1 at integration points inD by using (17), (18).

∗ Next time step

of ũn+1, defined by (11), inD. To this end, and for the purpose of performing the integration
in (41) and (37), the annular domainR ≤ r ≤ rmax is divided into integration cells with
polar geometry. This has been done in [26] in the linear case and is also often done in
the boundary-element method to evaluate infinite-domain integrals. The integrals in (41)
and (37) are calculated numerically by using a simple trapezoidal rule per integration cell
in both ther - and θ -directions. The use of a Laguerre integration rule inD (see [30])
as an alternative to this procedure has been checked and found not as effective for the
time-dependent case. A discussion on the accuracy of the exterior integration, as well as
example error calculations, is presented in [30] for the linear elliptic case, when there is an
inhomogeneity (i.e., sources) in the exterior.

In choosing the truncation distancermax, one can exploit the fact that the fastest wave fronts
advance with velocityc. This is true regardless of the dispersive and nonlinear nature of the
waves. This fact can be proved easily by considering the standard integral representation
of the solution using the Riemann kernel for the linear wave equation withu-dependent
forcing. Such a consideration shows that with the nonlinear equation (1), wheref (0) = 0,
if the solution exists globally then no group velocity can be larger than the characteristic
velocity c. In other words,c is the largest possible speed of the propagating waves. This
property is also exhibited in the numerical experiments (see Section 8).

In this light, the truncation distancermax need not be constant during the time stepping.
In fact, rmax may be chosen at each time step such that it is always just ahead of the wave
fronts which advance with velocityc. Moreover, there is no point in increasingrmax beyond
a certain distance where the amplitude of the waves is believed to be sufficiently small so
as not to affect the value of the integrals in (41) and (37).

Once the size of the exterior integration region (i.e., the distancermax) is determined, the
size and number of the integration cells may be chosen so as to have a sufficient number of
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cells per wavelength, to the accuracy and scale that is desired. Since the same considerations
also determine the density of the finite element mesh insideÄ, having the size of the cells
equal to the size of the elements inÄ adjacent toB is a reasonable choice.

It may appear that we are computing in a large domain (which is to be avoided due
to computational inefficiency); however, it should be noted that only anintegration is
performed here over a large domain, and not the solution of a partial differential equation.

Remark 4. The expressions forM andH [ f̃ ] (see (39) and (41)) involve infinite series. In
practice all the infinite sums are truncated after a finite number of terms,N. The associated
truncation error and convergence properties (for linear problems), including the rate of
convergence withN, were estimated and measured recently in [17]. Generally, only a few
terms are needed to achieve a satisfactory level of accuracy.

Remark 5. The computationally intensive part of the algorithm is the evaluation of
the infinite integrals appearing in (41) and (37), as discussed in Remark 3 above. In [27]
we considered a special simplified procedure, albeit for time-independent problems, that
significantly reduces the computational effort involved. The quadratic asymptotic boundary
condition proposed by Hagstrom [23] also deals with similar difficulties for a class of
nonlinear problems in cylinders. However, we have found that in the time-dependent case,
the accuracy achieved by the simplified scheme deteriorates rapidly in time, and therefore
we use the full scheme based on simple iteration in this case.

8. NUMERICAL EXAMPLES

Now we present a few numerical results for problems governed by the nonlinear wave
equation (1). Strauss [28] has shown that solutions to (1) either exist globally or blow up in
a finite time, depending on the nonlinear functionf (u) and sometimes also on the initial
data. For example, it can be proved that iff (u) = −u3, then all solutions exist globally
(for t <∞), while if f (u) = u2 or−u2, then all solutions blow up in a finite time. These
theorems are proved in [28] for the three-dimensional case, but our numerical results show
that the same behavior is obtained in two dimensions.

To measure the accuracy of our numerical results, we construct a reference solution which
we refer to in what follows as the “exact” solution. This solution is obtained by performing
the calculation with a relatively large computational domainÄ, a very fine mesh, and a large
integration exterior domain with many integration cells (all relative to the actual numerical
solution under consideration). We also make the convergence tolerances extremely small.
On the other hand, the time-step size used,1t , is the same as in the actual computational
model; i.e., we do not attempt to make the temporal error smaller than that which the time
integration scheme produces. We denote the reference solution obtained in this manner
by uex.

We first consider an axisymmetric problem, withc = 200 andf (u) = −qu3, whereq is
a positive constant. The obstacle is a circle of radiusa = 0.25. The initial values ofu andu̇
(see (4)) are zero throughout the infinite domain. On the obstacle boundary0 we prescribe
u = 1 at timet ≥ 0. Thus, the obstacle is at rest att = 0− and starts to radiate cylindrical
waves att = 0+.

Figures 2a–2d show the “exact” solution,uex, as a function of the radial coordinater ,
for four times(t = 0.01, 0.1, 0.2, and 0.3) and three values of the nonlinearity parameter
q (q = 0, 104, and 2× 105). At very small times, the nonlinearity does not have a strong
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FIG. 2. An axisymmetric example,f (u) = −qu3. “Exact” solutions as functions of the radial coordinater
for three values of the nonlinearity parameterq (a) att = 0.01, (b) att = 0.1, (c) att = 0.2, and (d) att = 0.3.

effect on the solution, and the three solutions in Fig. 2a almost coincide. For larger times, the
nonlinearity becomes very significant. The solution to the linear problem (q = 0) has the
largest magnitude at a given radial location, but all waves propagate with the same speed;
in Fig. 2b the wave front reachesr = ct = 20 for all three solutions. This is expected: see
Remark 3 in Section 7.

The computational parameters are as follows. We set the circular artificial boundary at
R = 0.5. The finite element mesh consists of 3 layers of bilinear quadrilateral elements,
with 24 elements in each layer. We use the Newmark time integration scheme (see Section 3)
with parametersβ = 0.25 andγ = 0.5. This is the unconditionally stable implicit second-
order average acceleration scheme. We use a time step of1t = 0.01, which amounts to a
Courant number of about 24. This means that the fastest waves propagate at a rate of about
24 elements per time step (although, due to the dispersive nature of the solution, there are
slower waves, too). Of course, this is possible only with an unconditionally stable scheme
and may lead to insufficient temporal accuracy. The accuracy can be improved by taking a
smaller time step or a higher-order time integration scheme.

For the integration in the exterior domain (see Section 7, Remark 3) we usermax= 50, 250
integration cells in the radial direction, and 24 cells in the circumferential direction. We use
N = 10 terms in the DtN expansion. The residual-norm tolerances used for terminating the
simple-iteration and Newton-iteration processes (see Box 1 and Section 7, Remark 1) are
both 10−5.
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TABLE 1

An Axisymmetric Example, f (u) = −qu3: “Exact” Solution and Error at Various Times

for Three Values ofq

q = 0 q = 10,000 q = 200,000

t “Exact” Error “Exact” Error “Exact” Error

0.01 0.6022 0.0004 0.5978 0.0004 0.5381 0.0002
0.02 0.9441 0.0014 0.9164 0.0009 0.7089 0.0001
0.03 0.7528 0.0002 0.7059 0.0001 0.4979 0.0006
0.04 0.9081 0.0022 0.8536 0.0018 0.6861 0.0005
0.05 0.8174 0.0003 0.7509 0.0004 0.5534 0.0011
0.06 0.8825 0.0030 0.8119 0.0020 0.6378 0.0006
0.07 0.8558 0.0016 0.7796 0.0002 0.5960 0.0011
0.08 0.8673 0.0031 0.7867 0.0014 0.6080 0.0005
0.09 0.8790 0.0036 0.7965 0.0012 0.6167 0.0004
0.1 0.8598 0.0033 0.7736 0.0005 0.5960 0.0002

In Table 1 some numerical results are given for this example, at various times and for the
three values ofq mentioned before. The value of the “exact” solutionuex, as well as the error
defined by|uh−uex| (whereuh is the finite element solution), is given atr = R. The errors are
very small in all cases relative to the solution itself. It is interesting to note that at most time
steps (although not for all of them) the error is smaller for the larger values ofq; the strongly
nonlinear case leads to more accurate results. Moreover, the error increases with time in
the linear case and maintains the same level in the nonlinear cases. These observations
are related to the behavior of the solutions observed in Fig. 2; the solution to the linear
problem (q = 0) “decays” less rapidly asr increases, and thus its numerical integration in
the exterior domain is more demanding. Similar behavior is observed for later times.

Now we turn to the casef (u) = qu2, whereq is a positive constant. All the other
parameters are the same as in the previous example. Figures 3a–3c show the solutions at
r = R obtained as functions of time for three values ofq (q = 0, 2000, and 5000). Three
solutions are shown for each value ofq: the “exact” solution, the solution obtained by the
procedure proposed in this paper and using the DtN boundary condition onB, and the
solution obtained by using a Sommerfeld-like local boundary condition onB [4, 11]. In
the latter case the nonlinear problem is solved inÄ, but the exterior domainD is disregarded
altogether. In the linear case (q = 0), as shown in Fig. 3a, the DtN solution agrees very well
with the “exact” solution, whereas the Sommerfeld condition produces a large error. This
is expected, since it is well known that the Sommerfeld-like boundary condition generates
large spurious reflections fromB [11].

The agreement between the DtN and “exact” solutions is also apparent in the nonlinear
cases, shown is Figs. 3b and 3c. The difference between these solutions and the Sommerfeld
solution is even more dramatic here. Whereas the “exact” and DtN solutions “blow up”
in a finite time (as they should according to the theory [28]; see discussion above), the
Sommerfeld solution remains bounded and oscillatory aboutu = 1! (In fact, the Sommerfeld
solution changes only slightly whenq is changed.) It is also interesting to note that the “blow
up” occurs at an earlier time for a larger value of the nonlinearity parameterq.

Next, we return to the casef (u)=−qu3, for which the solution exists globally,
and we setq= 2× 105. On the obstacle surface0 we prescribeu= 1+ cos 2θ . All
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FIG. 3. An axisymmetric example,f (u) = qu2. Comparison of solutions atr = R as a function of time at
(a)q = 0, (b)q = 2000, (c)q = 5000.

the other problem parameters remain unchanged. Figure 4 shows the “exact” solution and
three finite-element solutions as a function of the angleθ , atr = R andt = 0.12. The three
finite-element solutions are those obtained by using onB the Sommerfeld condition; the
DtN condition with only the zeroth term, i.e.,N = 0; and the DtN condition withN = 6.
It is clear that while the Sommerfeld solution and theN = 0 solution are rather poor, the
N = 6 solution agrees well with the “exact” solution. Similar behavior is observed in Fig. 5,
where these solutions are compared as functions of time atr = R andθ = 0.

We define the relative errorE=‖uh−uex‖/‖uex‖, where‖·‖ is theL2(B) norm. In Fig. 6
we show this error (on a logarithmic scale) as a function of time, for four finite element
solutions: the Sommerfeld solution and the DtN solutions withN = 0, N = 2, andN = 6.
Note that the accuracy of theN = 2 andN = 6 solutions is much higher than that of the
other solutions. The reason that theN = 2 solution is already quite accurate is that the
second mode is the principal mode in the problem, as dictated by the boundary condition
given on0. The small differences between theN = 2 andN = 6 solutions are due to the
mode coupling that exists in this nonlinear problem.

For f (u) = qu2 with the same boundary condition on0, we have obtained results which
are similar in character to those shown previously in the axisymmetric case. The finite-
element solution obtained by the procedure proposed here exhibits an unlimited growth, as
predicted by theory, while the Sommerfeld-like boundary condition onB yields solutions
which remain bounded.
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FIG. 4. An angle-dependent example,f (u) = −qu3. Comparison of solutions as a function of the angleθ at
r = R andt = 0.12.

Finally, we solve a problem in which a “disturbance” propagates into the exterior domain
acrossB. We consider the same geometry as before, withc = 17.5, f (u) = −qu3, and
q = 2× 104. On the obstacle boundary0 we prescribeu = 0 at timet ≥ 0. We use a
finite element mesh inÄ(a ≤ r ≤ R) which is much finer than the previous mesh, so as
to resolve the propagation of a small disturbance. This disturbance is triggered through the
initial condition. At timet = 0 we prescribeu = 1 at six nodes (all the other nodal values
being zero): the nodes located at (0.333, 0) and (0.338, 0) and the four neighboring nodes
located symmetrically with respect to the liney = θ = 0. Figure 7 shows the solution along

FIG. 5. An angle-dependent example,f (u) = −qu3. Comparison of solutions as a function of time atr = R
andθ = 0.
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FIG. 6. An angle-dependent example,f (u) = −qu3. Comparison of relativeL2(B) errors as a function of
time.

this radial line at different times. Note that whileB is located atr = R= 0.5, the range of
r values in the figure extends tor = 2. The direct wave and the wave reflected back from
the obstacle atr = a pass throughB and propagate into the exterior domain. Clearly, some
interesting coupling effects occur due to the wave nonlinearity.

9. CONCLUSION

In this paper we have proposed a finite-element scheme for the solution of nonlinear
time-dependent exterior wave problems. In particular, we have concentrated on the two-
dimensional nonlinear scalar (Klein–Gordon) equation as a relatively simple model in this
category. The scheme is based on the Dirichlet-to-Neumann method which was originally
developed for linear elliptic problems [6, 8–10]. In the DtN method the infinite domain is
treated in an exact manner, thereby providing an accurate representation of the far field.
Here the DtN method has been extended to the nonlinear time-dependent case. The new
method draws from ideas used in [26] for the linear time-dependent case, and in [27] for
the nonlinear elliptic equation∇2u+ f (u) = 0. Additional relevant analysis can be found
in [17, 30]. In the present context, we use the DtN boundary condition (44) which is exact
for the time-discrete problem that is locally “linearized” via the simple iteration process.

In Ref. [27], other ways to linearize the problem in the exterior are considered (in the
context of elliptic problems). One of them is based on treating the nonlinearity in an implicit
way, which avoids the need for an internal fixed-point procedure at each time step. However,
we show in [27] that the latter scheme is almost equivalent to the one proposed here in terms
of the actual computation.

One ingredient of the proposed numerical method is animplicit time integration scheme.
In this paper we have used the two-parameter Newmark family of time integrators (with
β >0), although any other implicit scheme can be used as well. Unfortunately, we have not
yet found a way to extend the method such thatexplicit time integration schemes may be
used with it.



        

256 GIVOLI AND PATLASHENKO

FIG. 7. Propagation of a small disturbance,f (u) = −qu3. Solution along the radial liney = θ = 0 at
different times.
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We have seen that a “naive” boundary condition onB like the Sommerfeld-like condition
not only yields poor accuracy, but may alter the qualitative behavior of the numerical
solution. In particular, when applied to problems whose exact solutions blow up in a finite
time, the Sommerfeld-like condition produces bounded solutions. On the other hand, the
DtN procedure proposed here captures the correct behavior of the solution.

The computational effort involved in the solution of nonlinear time-dependent wave
problems in infinite domains is always quite large, and the present scheme is no exception.
There is the inevitable tradeoff between accuracy and computational cost. For example, our
method, in the way it is currently implemented, takes more CPU time (although much less
memory!) than the simple scheme of using the Sommerfeld condition on a remote boundary
r = rmax. However, the implementation of our method may be made more efficient by (a)
calculating and tabulating, as a preprocess, all the quantities that do not change with time,
which depend only on a small number of parameters, so that they can be used repeatedly
and efficiently during future computations; (b) using a small variablermax, as explained in
Remark 3 of Section 7; (c) calculating the Fourier coefficientsf̃

c
m(ξ) and f̃

s
m(ξ) in (41) by

using FFT; (d) using more effective numerical integration schemes in the exterior (rather
than the trapezoidal rule that we employ); and (e) replacing the fixed-point procedure by a
more efficient scheme, along the lines of [27].

The nonlinear wave equation (1) has a deceivingly simple form, but the exterior prob-
lem already necessitates a quite complicated numerical scheme. Real challenges lie in the
solution of yet more complex nonlinear exterior wave problems, such as problems of large-
amplitude water waves and nonlinear elastic waves. We shall try to adapt the method devised
here to these applications.
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