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A finite element scheme is devised for the solution of nonlinear time-dependent
exterior wave problems. The two-dimensional nonlinear scalar (Klein—Gordon) wave
equation is taken as a model to illustrate the method. The governing equation is first
discretized in time, leading to a time-stepping scheme, where a nonlinear exterior
elliptic problem has to be solved in each time step. An artificial bouniasyintro-
duced, which bounds the computational donfjrand a simple-iteration procedure
is used to linearize the problem in the infinite domain outdid& his enables the
derivation of a Dirichlet-to-Neumann boundary condition®rFinite element dis-
cretization and Newton iteration are finally employed to solve the problemirhe
computational aspects of this method are discussed. Numerical results are presented
for the nonlinear wave equation, whose solutions may blow up in a finite time under
certain conditions, and it is shown that the behavior of the solution predicted by
theory is captured by the schemeg 1998 Academic Press

Key Wordsnonlinear waves; Dirichlet-to-Neumann (DtN); finite element; exterior
problems.

1. INTRODUCTION

Nonlinear waves in unbounded media are encountered in a variety of applica
[1-3]. The nonlinearity may originate from the material constitutive relations, from the la
amplitude of the motion, or from the presence of a free boundary. In most cases, the n
ear governing equations are time-dependent; pure time-harmonic waves are not poss
the nonlinear regime. For this and other reasons, the theoretical and computational ar
of nonlinear wave problems is typically complicated. The computational treatment of
unboundedness of the problem domain is an additional difficulty which must be dealt \

Most numerical methods for unbounded domain problems [4] are not directly de
ned to account for nonlinearities in the exterior domain. In fact, some methods,
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FIG. 1. Atypical setup of the DtN method for exterior problems.

boundary-element schemes [5]. Dirichlet-to-Neumann (DtN) finite-element schemes
and some infinite-element schemes [7], are based on an exact solution of the gover
equations in the far field, and such an exact solution is not available with nonlinearit
which extend to infinity.

In this paper we devise a new DtN-type numerical method for nonlinear exterior we
problems. The DtN finite element method was originally developed for the solution
linear elliptic problems in infinite domains [6, 8—10] and can be summarized as follov
First, a simple-shaped artificial bounddys introduced, which divides the original infinite
domain into two domains: a finite computational dom@iand an infinite residual domain
D (see Fig. 1). Then, by analyzing the problemDn an exact relation o, which is
based on the associated Dirichlet-to-Neumann map, is derived. This relation is used
boundary condition o (called the DtN boundary condition) to obtain a new well-posec
problem in€2. This new problem is equivalent to the original infinite-domain problem i
that both problems have the same solutiogirinally, the new problem ig is solved by
the finite-element method.

In the context of linear wave problems, the DtN conditioritin a perfectly nonreflecting
boundary condition [11]. Analysis and some improvements of the DtN method can be fol
in [12—-17]. Closely related schemes for various problems and configurations were dev
in [18—22]. Other types of schemes that involve exact treatment of the far field have ¢
been used [23-25].

In [26], the DtN method was extended to treat the time-dependent (hyperbolic) we
equation, still in the linear regime. Recently, several DtN-type schemes have been prop
for a class of nonlinear elliptic problems [27], of the foRu + f (u) = O (cf. also [23]).
Here, we combine some of the ideas of [26] and [27] to obtain a new scheme for nonlin
time-dependent wave problems. We do this in the context of a model problem, gover
by the two-dimensional nonlinear scalar (Klein—Gordon) equation [28]. This equation |
important applications in quantum physics. It also describes waves in a membrane lyin
a nonlinear elastic foundation. However, more importantly, it serves as a relatively sim
model for nonlinear wave problems which helps to bring to light some theoretical isst
and typical computational difficulties.

Following is the outline of the paper. In Section 2 we state the model problem unc
consideration. In Section 3 we discretize the nonlinear wave equation in time, using
two-parameter implicit Newmark family of time integration schemes. This leads to a tim
stepping scheme, where a nonlinear exterior elliptic problem has to be solved in each
step. In Section 4 we introduce an artificial boundB&rwhich bounds the computational
domain<2. Then we apply a simple-iteration procedure to repeatedly linearize the ellip
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problem in the infinite domai outsideB. Once a linear elliptic problem is defined h

it is possible to derive an exact DtN boundary condition®rthis is done in Section 5.
In Section 6 we discuss the finite-element formulatioRinrhe whole solution procedure
is summarized and commented on in Section 7. In Section 8 we present some num
results, check their accuracy, and compare their global behavior to that predicted by tr
[28]. We conclude with some remarks in Section 9.

2. STATEMENT OF THE PROBLEM

We consider the two-dimensional infinite dom&noutside an obstacle with boundary
I'. In R, the nonlinear version of the Klein—Gordon equation governs [28]:

U —c?Veu = f(u). (1)

Hereu(x, t) is the unknown wave functiorx is the position vector in spacejs time, c
is a given constant wave speed, aih@) is a given nonlinear function. A superposed do
denotes differentiation with respectttoWe note in passing that whein(u) = —w3u, (1)
becomes the linear Klein—-Gordon equation.

The obstacle boundary is divided into two partsT” = I'y U I'h. On Ty, a Dirichlet
condition is given, whereas dr),, a Neumann condition is given:

u=g onTy (2)
ou =h onTy. 3)
av

Hered/ov is the normal derivative ofi,, andg andh are given functions. Initial conditions
are given foru andu:

u(x, 0) = up(x), u(x, 0) = vo(Xx). (4)

Hereup andvg are given functions with compact support. Atinfinity the solution is bounde
Since the differential operator in (1) is hyperbolic, there is no need in a “radiation conditit
at infinity to complete the statement of the problem, even though the solution can be sk
to satisfy such a condition [29].

3. TIME DISCRETIZATION

The first step in the proposed numerical method isliszretize the problem in time
To fix ideas we choose the Newmark family of time-integration schemes, although o
algorithms can be considered as well. kdtbe the (constant) time-step interval, andtjet
be the time aften time steps. Also, let,, v, anda, be the approximations af, u, andi
at timet,. The Newmark method applied to Eq. (1) consists of the three equations

an+1 — C*VUni1 = f(Unt1) )
(At)?

Uny1 = Up + Atop + 2 [(l —2B)a, + zlgan-kl] (6)

Uny1 = vn + At[(1 = y)an + yani1l]. (7)

Here 0< B8 < 0.5and 0< y < 1 are two parameters which determine the stability ar
accuracy properties of the scheme. We are interested omhpiitit schemes, and therefore
we exclude the casg¢ = 0.
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After some algebra, Egs. (5)—(7) yield the recursive formulae

2
(1~ (AO?AVlni1 = U + Atvg + (A 28130 + 26T Wnin] ©)
2
ant1 = % W(Unﬂ — Un — Atwy) — (1 - 2B)an 9
Unt1 = vn + At[(1 - y)an + yans1l]- (10)

Note that (8) is an elliptic partial differential equation gy, ;. The time-discrete version of
the boundary conditions (2) and (3) as well as the boundedness condition at infinity mus
added to (8) to complete the statement of the problem. From an implementational viewp
it is beneficial to write these equations in a predictor—corrector form, namely:

Prediction:
_ (At)?
Ony1 = Un + Atvn + ——(1—28)a (11)
Uny1 = vn + At(1 — y)an. (12)
Solution:
(1 — (AD?BC?VH)Uny1 = Ons1 + (AD?BT (Unt1) (13)
Uny1 = Ony1 ONTy (14)
ou
™! —hp  oNT (15)
v
Unt1 < 00 at infinity. (16)
Correction:
1 -
ant1 = W(Unﬂ — Ony1) (17)
Uni1 = Uny1 + y Atangg. (18)

Thus, in addition to the updating performed in the prediction and correction phases, |
has to solve in each time step the elliptic problem (13)—(16) in the unbounded d@&nain
To write (13) more concisely we define

o = (CAt \/E) _1, 1?(un-kl) = _Dn+l - (At)zﬁf (un-&-l)' (19)
Then (13) becomes

@ 2V2Upy1 — Unys = f(Unpa). (20)

4. LINEARIZATION VIA SIMPLE ITERATION

We now introduce a circular artificial boundasyof radiusR which encloses the obstacle
and bounds the computational dom&nThe infinite domain outsidE is denotedD, i.e.,
D =R — Q (see Fig. 1).
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We employ a simple-iteration procedure to replace the nonlinear equation @@)yra
sequence of linear equations. The solutigp, in iterationi is denotedJ,ﬂ'll. Equation (20)

is replaced by
a vl —uit? = f(ul),) inD. (21)
Sinceuﬂ}rl is known at the + 1 iteration, the functiorf in (21) is just a given function of
X, and thus (21) is Bnear elliptic equation. Also, the boundedness condition (16) is writte
as
ultP < oo atinfinity (22)

Note that (21) replaces (20) only in the exterior domBinin the computational domain
2, the governing equation remains the nonlinear equation (20).

5. DIN BOUNDARY CONDITION

Now we shall derive an exact boundary condition Brfor uﬂjll). This condition is

derived by finding a solution iD, which exactly satisfies Egs. (21) and (22), as well as tt
obvious condition

ui =uliP(RO)  onB. (23)

In the remainder of this section we shall omit the indioes 1 and(i + 1) for brevity. We
shall also usef to meanf (u(}),). Note that at the current iteratiohis a known function.

The problem (21)—(23) is solved by the method of variation of parameters. We se
solution of the form

u(r, 0) = Z/[Cm(r) cosmd + D (r) sinmé]. (24)

m=0

The prime after the sum indicates that the tenma= 0 is multiplied by a factor of 22. We
substitute (24) into (21) and for eaghwe equate the coefficients of co® and sirmé. This
results in the following uncoupled set of ordinary differential equationsifer 0, 1, 2, .. .:

-2 ” 1 ’ m2 £C
o Cm+ ch— rTCm —Cm = fm(r) (25)
-2 ” 1 ’ m2 S
o Dm+FDm_ risz — Dm = fm(r) (26)

Here a prime denotes differentiation with respeat.tdhe functionsffn(r) and ffn(r) are
respectively the cosine and sine coefficients in the Fourier decomposition of the func
f. Also, substituting (24) into the boundary condition (23) results in

2
Cn(R) = %/ cosmd u(R, 9) do 27)
0

2
Dn(R) = %/0 sinmd u(R, 9) do. (28)
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Equations (25)—(28) can be written in the general form
r2y’ +ry — @2 +mly = f(r) (29)
Y(R) = Yr. (30)
The general solution of theomogeneousounterpart of (29) iA Iy (ar) + BKy(ar),
wherel,, andK,, are the modified Bessel functions of the first and second kind. To satis

(22), the homogeneous solution must involve dijyand notl ,,. Imposing (30) in addition
yields the solution

Km(ar)
Km(@R)’

Yhom(r) = Yr (31)

Since (31) satisfies the homogeneous counterpart of (29) and the condition (30), we |
seek a particular solution which satisfies (29) and the homogeneous counterpart of (
This particular solution is obtained by deriving first the associated Green’s function. T
Green'’s function is found to be [29]

Pm(E)Ym([Em(©)] Y r<ég
2Gp(r, &) = , 32
om0 8) {wm(é)qﬁm(r)[Em(é)]‘l; r=¢ (32
where

#m(&) = Km(a§) (33)
Ym(§) = Im(@§)Km(@R) — Kn(a§) Im(@R) (34)
Em(&) = ¥m@E)dn(E) — dm(E)Yn(8). (35)

Using this Green'’s function, the particular solution is
6 = [ Gntr. &) f&) k. (36)

The solution of (29) and (30) is the sumygm in (31) andy, in (36). We are now able
to write the solution of (25)—(28) for the coefficierg (r) and Dy (r). These expressions
are substituted in the Fourier series (24) and after some algebra we get the sglutfon
in the domainD. The end result is

1N Kplar) [ ) )
,0 =—§ 0—06 R, 6" do’
u(r, 6) - Kn(@R) Jo cosm( yu( )

m=0

+a22’/mgzem(r,s)(f;(g)cosme+ (&) sinmg) de.  (37)
m=0 R

We now differentiate both sides of (37) with respect tind then sat = R. After some
algebra, and using the properties of the modified Bessel functions, we get

0 ~
8—$=—MU+H[f] on B (38)

00 2
Mu = Z/ k(6 — 0") U(R, ") do’ (39)
m=0 70
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N aKy@R) o
km(@ — 0" = = Km@R) cosm(® — 0" (40)
H[f16) = QZZ’/W Bm(&)[ fn(&) cosmé + (&) sinme] de (41)
m=0 R
_ Km(aé) &
Bm(§) = — Kn(@R) R (42)
e 1 2 . s 1 21 -
(&) = —/ cosmo f (£, 0)do, f &)= —/ sinmo f (&, 0)do.
T Jo T Jo

(43)

Equation (38) is an exact Dirichlet-to-Neumann boundary conditiof8 ogimilar to the
one obtained in [26] in the linear case. It is exact with respect to Egs. (21)—(23), althot
of course, it is not exact with respect to the original time-dependent nonlinear probl
Two approximations which must be made in practice are the truncation of the sumsin
and (41) after a finite number of terms, and the numerical integration needed in (41);
Section 7. The integral in (39) can be evaluated exactly, as is done in [6, 26].

If we now recover the indices+ 1 and(i + 1), the DtN boundary condition (38) becomes

(i+1)
dUny1

ar
Note thatH in (44) is a known function at thé + 1) iteration.

= -MuliP +H[f(,)] onB (44)

6. FINITE-ELEMENT FORMULATION

Attime stepn + 1 and at simple-iteratio@ + 1), the problem to be solved 2 consists
of the nonlinear elliptic equation (20), the boundary conditions (14) and (15) end the
DtN boundary condition (44) of8. This problem is solved by the Galerkin finite-elemen
method. The weak form of the problem is formally similar to that given in [26] in the line
case. Finite-element discretization leads to the system of nonlinear algebraic equatior

Kdni1 = Fnya(dnga), (45)
where

K=K3+KP  Foa=F3,+F, (46)
Kag = a(Na, Ng) (47)
K2 = b(Na, Ng) (48)
(F21) o= (Na, f(Un12) = > (Grs1)Ba(Na, Np) (49)

Benyg
(Fr?+1)A = (NAa H [f(ug}rl)])g' (50)

Here the following bilinear forms are used:
a(w, u) = a’z/ Vw - Vu dQ +/ wu d2 (51)
Q Q

b(w, u) =a—2/Bw|v|u dB (52)
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(w, f):/wfdQ (53)
Q
(w,H)s = a_z/ wH dB. (54)
B

In (47)—(50),A andB are indices corresponding to global node numi#eendB, andNa
is the finite element shape function associated with iada (49),74 is the set of all nodes
on 'y, and(gn+1)e is the value of the functiomy,1 at nodeB onT'gy. In (45), K is the
global stiffness matrixg is the solution vector, ang is the load vector. We omit the index
(i + 1) from all the variables in (45)—(50) for brevity; however, in (50) we indicate that
is calculated based anfrom the previous iteration, i.et.l,ﬂil. The nonlinearity of (45) is
due to the dependence of the load vedtoon the solution vectod, through fN(unH) in
(49).

The nonlinear algebraic system (45) is solved using Newton iterations. At Newton it
ation j + 1, the solution is updated via

ditt =dl 4+ Ad, (55)

where the incremental vectavd! is found by solving the linear system of equations
K{Adl = RI. (56)
Here Ktj is the tangent stiffness matrix, aid is the residual vector. They are given by
gFa

ad
R = F(d)) — Kdl. (58)

K{ =K — @ (57)

The last term on the right side of (57) can be expressed explicitly by

oFa& . oFg¢ . ~ i
] =_ A = ¢ ]
[ 54 d )} = 9ds dh = /gz Na f < EC chc> Ng dQ2. (59)

AB

Thus, the tangent stiffness matlﬁxj is symmetric.
7. SOLUTION PROCEDURE

The entire solution procedure is summarized in Box 1. We now make some comme
on the computational aspects of this procedure.

Remark 1. This solution scheme consiststhfee loopsthe time-step loop (indicated
by n), the simple-iteration loop (indicated by, and the Newton-iteration process which is
the innermost loop (indicated bj). The convergence criterion for stopping either of the
latter two processes is based on evaluating the residual norms and comparing them to -
given tolerances.

Remark 2. The matrixK = K2 + K® in (45), (46) remains constant during the time
stepping; only the right-hand sidg ; is changing. Thu¥ has to be formed and factorized
only once, outside of the time-step loop. This also implies that the effort it requires
marginal for an analysis with many time steps.

Remark 3. The computation oH[ f] in (41) involves the computation of the Fourier
coefficients of the functiorf given by (19), forf > R. Thus, it is necessary to keep track
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BOX 1
General Solution Procedure for the Time-Dependent Nonlinear Exterior Wave Problem

* Time-step loopn =0, 1,2, ...
1. Compute the predicted valuég,1 andv,1 in € by using (11), (12).
2. Compute the predicted valuéig,; anduv,; at integration points iD by using
(11), (12).
3.u9. = Gpg.
n+1 n+1
* Simple-iteration loopt = 0,1, 2, ...
4.Use (41) to findH[ f (u$),)] on B.
* Newton-iteration loopj = 0,1, 2, ...
5. Perform a single Newton iteration: solve (56) and use (55) to update t

solution in<.
6. Check convergence. If converga(ﬂ':ll) in Q is obtained; go to step 7.
* Next j

7.Use (37), withf = f(u§) ), to findu$ ;" at integration points ifD.
8. Check convergence. If convergeq,.; is obtained; go to step 9.
* Nexti
9. Correcta,+1 andv,.1 in Q by using (17), (18).
10. Correcta,1 andv,,; at integration points ib by using (17), (18).
* Next time step

of liny1, defined by (11), irD. To this end, and for the purpose of performing the integratic
in (41) and (37), the annular domal < r < rpya is divided into integration cells with
polar geometry. This has been done in [26] in the linear case and is also often dor
the boundary-element method to evaluate infinite-domain integrals. The integrals in
and (37) are calculated numerically by using a simple trapezoidal rule per integration
in both ther- and6-directions. The use of a Laguerre integration ruleDin(see [30])
as an alternative to this procedure has been checked and found not as effective fc
time-dependent case. A discussion on the accuracy of the exterior integration, as w
example error calculations, is presented in [30] for the linear elliptic case, when there i
inhomogeneity (i.e., sources) in the exterior.

Inchoosing the truncation distangg,, one can exploit the fact thatthe fastest wave fron
advance with velocitg. This is true regardless of the dispersive and nonlinear nature of
waves. This fact can be proved easily by considering the standard integral represen
of the solution using the Riemann kernel for the linear wave equationwitependent
forcing. Such a consideration shows that with the nonlinear equation (1), vili@re= 0,
if the solution exists globally then no group velocity can be larger than the character;
velocity c. In other wordsg is the largest possible speed of the propagating waves. T
property is also exhibited in the numerical experiments (see Section 8).

In this light, the truncation distanag,ax need not be constant during the time stepping
In fact, rmax may be chosen at each time step such that it is always just ahead of the \
fronts which advance with velocity Moreover, there is no point in increasing,x beyond
a certain distance where the amplitude of the waves is believed to be sufficiently sme
as not to affect the value of the integrals in (41) and (37).

Once the size of the exterior integration region (i.e., the distgrgis determined, the
size and number of the integration cells may be chosen so as to have a sufficient numi
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cells per wavelength, to the accuracy and scale that is desired. Since the same consider
also determine the density of the finite element mesh irQideaving the size of the cells
equal to the size of the elementstnadjacent td3 is a reasonable choice.

It may appear that we are computing in a large domain (which is to be avoided c
to computational inefficiency); however, it should be noted that onlynégration is
performed here over a large domain, and not the solution of a partial differential equati

Remark 4. The expressions fovl andH [ f] (see (39) and (41)) involve infinite series. In
practice all the infinite sums are truncated after a finite number of téMniEhe associated
truncation error and convergence properties (for linear problems), including the rate
convergence withN, were estimated and measured recently in [17]. Generally, only a fe
terms are needed to achieve a satisfactory level of accuracy.

Remark 5. The computationally intensive part of the algorithm is the evaluation c
the infinite integrals appearing in (41) and (37), as discussed in Remark 3 above. In |
we considered a special simplified procedure, albeit for time-independent problems,
significantly reduces the computational effort involved. The quadratic asymptotic bound
condition proposed by Hagstrom [23] also deals with similar difficulties for a class
nonlinear problems in cylinders. However, we have found that in the time-dependent c:
the accuracy achieved by the simplified scheme deteriorates rapidly in time, and there
we use the full scheme based on simple iteration in this case.

8. NUMERICAL EXAMPLES

Now we present a few numerical results for problems governed by the nonlinear wi
equation (1). Strauss [28] has shown that solutions to (1) either exist globally or blow u
a finite time, depending on the nonlinear functibtu) and sometimes also on the initial
data. For example, it can be proved thaf ifu) = —u?, then all solutions exist globally
(for t < oo), while if f(u) = u? or —u?, then all solutions blow up in a finite time. These
theorems are proved in [28] for the three-dimensional case, but our numerical results s
that the same behavior is obtained in two dimensions.

To measure the accuracy of our numerical results, we construct a reference solution w
we refer to in what follows as the “exact” solution. This solution is obtained by performir
the calculation with a relatively large computational dom@jma very fine mesh, and alarge
integration exterior domain with many integration cells (all relative to the actual numeric
solution under consideration). We also make the convergence tolerances extremely s
On the other hand, the time-step size uskt,is the same as in the actual computationa
model; i.e., we do not attempt to make the temporal error smaller than that which the ti
integration scheme produces. We denote the reference solution obtained in this ma
by Uex.

We first consider an axisymmetric problem, with= 200 andf (u) = —qu?, whereq is
a positive constant. The obstacle is a circle of radies 0.25. The initial values ofi andu
(see (4)) are zero throughout the infinite domain. On the obstacle boundesyprescribe
u =1 attimet > 0. Thus, the obstacle is at resttat 0~ and starts to radiate cylindrical
waves at = 0.

Figures 2a—2d show the “exact” solutiany, as a function of the radial coordinate
for four times(t = 0.01, 0.1, 0.2, and 03) and three values of the nonlinearity parametel
q(q = 0,10% and 2x 10°). At very small times, the nonlinearity does not have a stron
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FIG. 2. An axisymmetric examplef (u) = —qu®. “Exact” solutions as functions of the radial coordinate
for three values of the nonlinearity parameggfa) att = 0.01, (b) att = 0.1, (c) att = 0.2, and (d) at = 0.3.

effect on the solution, and the three solutions in Fig. 2a almost coincide. For larger times
nonlinearity becomes very significant. The solution to the linear probigm Q) has the
largest magnitude at a given radial location, but all waves propagate with the same sj
in Fig. 2b the wave front reaches= ct = 20 for all three solutions. This is expected: se:
Remark 3 in Section 7.

The computational parameters are as follows. We set the circular artificial boundal
R = 0.5. The finite element mesh consists of 3 layers of bilinear quadrilateral eleme
with 24 elements in each layer. We use the Newmark time integration scheme (see Sect
with parameterg = 0.25 andy = 0.5. This is the unconditionally stable implicit second-
order average acceleration scheme. We use a time st&p €f0.01, which amounts to a
Courant number of about 24. This means that the fastest waves propagate at a rate of
24 elements per time step (although, due to the dispersive nature of the solution, ther
slower waves, too). Of course, this is possible only with an unconditionally stable schq
and may lead to insufficient temporal accuracy. The accuracy can be improved by taki
smaller time step or a higher-order time integration scheme.

For the integration in the exterior domain (see Section 7, Remark 3) wgase 50, 250
integration cells in the radial direction, and 24 cells in the circumferential direction. We |
N = 10 terms in the DtN expansion. The residual-norm tolerances used for terminating
simple-iteration and Newton-iteration processes (see Box 1 and Section 7, Remark 1
both 10°°.
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TABLE 1
An Axisymmetric Example, f(u) = —qué: “Exact” Solution and Error at Various Times
for Three Values ofq

q=0 g = 10,000 q = 200000
t “Exact” Error “Exact” Error “Exact” Error
0.01 0.6022 0.0004 0.5978 0.0004 0.5381 0.0002
0.02 0.9441 0.0014 0.9164 0.0009 0.7089 0.0001
0.03 0.7528 0.0002 0.7059 0.0001 0.4979 0.0006
0.04 0.9081 0.0022 0.8536 0.0018 0.6861 0.0005
0.05 0.8174 0.0003 0.7509 0.0004 0.5534 0.0011
0.06 0.8825 0.0030 0.8119 0.0020 0.6378 0.0006
0.07 0.8558 0.0016 0.7796 0.0002 0.5960 0.0011
0.08 0.8673 0.0031 0.7867 0.0014 0.6080 0.0005
0.09 0.8790 0.0036 0.7965 0.0012 0.6167 0.0004
0.1 0.8598 0.0033 0.7736 0.0005 0.5960 0.0002

In Table 1 some numerical results are given for this example, at various times and for
three values off mentioned before. The value of the “exact” solutigg, as well as the error
defined byu"—ue,| (Whereu" is the finite element solution), is giverrat= R. The errors are
very small in all cases relative to the solution itself. It is interesting to note that at most tii
steps (although not for all of them) the error is smaller for the larger valugsio# strongly
nonlinear case leads to more accurate results. Moreover, the error increases with tin
the linear case and maintains the same level in the nonlinear cases. These observ:
are related to the behavior of the solutions observed in Fig. 2; the solution to the lin
problem ¢ = 0) “decays” less rapidly asincreases, and thus its numerical integration ir
the exterior domain is more demanding. Similar behavior is observed for later times.

Now we turn to the casd (u) = qu?, whereq is a positive constant. All the other
parameters are the same as in the previous example. Figures 3a—3c show the solutic
r = R obtained as functions of time for three valuegigf) = 0, 2000, and 5000). Three
solutions are shown for each valuegfthe “exact” solution, the solution obtained by the
procedure proposed in this paper and using the DtN boundary conditid and the
solution obtained by using a Sommerfeld-like local boundary conditiofs ¢4, 11]. In
the latter case the nonlinear problem is solve@ jibut the exterior domaib is disregarded
altogether. In the linear casg & 0), as shown in Fig. 3a, the DtN solution agrees very wel
with the “exact” solution, whereas the Sommerfeld condition produces a large error. T
is expected, since it is well known that the Sommerfeld-like boundary condition genera
large spurious reflections from [11].

The agreement between the DtN and “exact” solutions is also apparent in the nonlir
cases, shown is Figs. 3b and 3c. The difference between these solutions and the Somm
solution is even more dramatic here. Whereas the “exact” and DtN solutions “blow U
in a finite time (as they should according to the theory [28]; see discussion above),
Sommerfeld solution remains bounded and oscillatory abetitl! (In fact, the Sommerfeld
solution changes only slightly wheris changed.) Itis also interesting to note that the “blow
up” occurs at an earlier time for a larger value of the nonlinearity parargeter

Next, we return to the casé (u)=—qu®, for which the solution exists globally,
and we setg=2x 10°. On the obstacle surfacEé we prescribeu=1+ cos?. All
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FIG. 3. An axisymmetric examplef (u) = qu?. Comparison of solutions at= R as a function of time at
(a)q =0, (b)g = 2000, (c)g = 5000.

the other problem parameters remain unchanged. Figure 4 shows the “exact” solutiol
three finite-element solutions as a function of the adgktr = Randt = 0.12. The three
finite-element solutions are those obtained by usingddhe Sommerfeld condition; the
DtN condition with only the zeroth term, i.eN = 0; and the DtN condition witiN = 6.

It is clear that while the Sommerfeld solution and the= 0 solution are rather poor, the
N = 6 solution agrees well with the “exact” solution. Similar behavior is observed in Fig.
where these solutions are compared as functions of time-aR and6 = 0.

We define the relative err@ = ||u" — Uey]| /|| Uex|l, Where] - || is theL »(B3) norm. In Fig. 6
we show this error (on a logarithmic scale) as a function of time, for four finite elem
solutions: the Sommerfeld solution and the DtN solutions Wwite= 0, N = 2, andN = 6.
Note that the accuracy of tHé = 2 andN = 6 solutions is much higher than that of the
other solutions. The reason that tNe= 2 solution is already quite accurate is that th
second mode is the principal mode in the problem, as dictated by the boundary conc
given onI". The small differences between the= 2 andN = 6 solutions are due to the
mode coupling that exists in this nonlinear problem.

For f (u) = qu? with the same boundary condition 6hwe have obtained results which
are similar in character to those shown previously in the axisymmetric case. The fir
element solution obtained by the procedure proposed here exhibits an unlimited growt
predicted by theory, while the Sommerfeld-like boundary conditiolBomelds solutions
which remain bounded.
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FIG. 4. An angle-dependent examplg(u) = —qu®. Comparison of solutions as a function of the argye
r = Randt = 0.12.

Finally, we solve a problem in which a “disturbance” propagates into the exterior dom:s
acrossB. We consider the same geometry as before, with 17.5, f (u) = —qu’, and
g = 2 x 10* On the obstacle boundaiy we prescribas = 0 at timet > 0. We use a
finite element mesh i (a < r < R) which is much finer than the previous mesh, so a:
to resolve the propagation of a small disturbance. This disturbance is triggered througt
initial condition. At timet = O we prescribel = 1 at six nodes (all the other nodal values
being zero): the nodes located at (0.333, 0) and (0.338, 0) and the four neighboring ne
located symmetrically with respect to the lipe= 6 = 0. Figure 7 shows the solution along

1.4
12+ | ;
" N .
1ok ; // \\ // \\ L ,//\\\ ./ /,\\ .
H ’ ¢ AY 7’ N 4 S -
i, o . L .- --
. o, N .
08 /\/\r/\--—-———‘\
3 :
061 i .
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- - - DIN, N=6
: ---- DtN, N=0
R o Sommerfeld
0.2
OO 1 1 1 I 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12
time

FIG.5. Anangle-dependent example(u) = —qu®. Comparison of solutions as a function of time at R
andé = 0.
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FIG. 6. An angle-dependent examplé(u) = —qu®. Comparison of relativé,(B) errors as a function of

time.

this radial line at different times. Note that whitkis located at = R = 0.5, the range of

r values in the figure extends to= 2. The direct wave and the wave reflected back frol
the obstacle at = a pass througl8 and propagate into the exterior domain. Clearly, son
interesting coupling effects occur due to the wave nonlinearity.

9. CONCLUSION

In this paper we have proposed a finite-element scheme for the solution of nonlil
time-dependent exterior wave problems. In particular, we have concentrated on the
dimensional nonlinear scalar (Klein-Gordon) equation as a relatively simple model in
category. The scheme is based on the Dirichlet-to-Neumann method which was origi
developed for linear elliptic problems [6, 8-10]. In the DtN method the infinite domain
treated in an exact manner, thereby providing an accurate representation of the far
Here the DtN method has been extended to the nonlinear time-dependent case. Th
method draws from ideas used in [26] for the linear time-dependent case, and in [27
the nonlinear elliptic equatioW?u + f (u) = 0. Additional relevant analysis can be founc
in [17, 30]. In the present context, we use the DtN boundary condition (44) which is e
for the time-discrete problem that is locally “linearized” via the simple iteration proces:

In Ref. [27], other ways to linearize the problem in the exterior are considered (in
context of elliptic problems). One of them is based on treating the nonlinearity in an impl
way, which avoids the need for an internal fixed-point procedure at each time step. How
we show in [27] that the latter scheme is almost equivalent to the one proposed hereint
of the actual computation.

One ingredient of the proposed numerical method isrgalicit time integration scheme.
In this paper we have used the two-parameter Newmark family of time integrators (\
B > 0), although any other implicit scheme can be used as well. Unfortunately, we have
yet found a way to extend the method such #iagilicit time integration schemes may be
used with it.
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We have seen that a “naive” boundary conditioriike the Sommerfeld-like condition
not only yields poor accuracy, but may alter the qualitative behavior of the numer
solution. In particular, when applied to problems whose exact solutions blow up in afi
time, the Sommerfeld-like condition produces bounded solutions. On the other hand
DtN procedure proposed here captures the correct behavior of the solution.

The computational effort involved in the solution of nonlinear time-dependent we
problems in infinite domains is always quite large, and the present scheme is no excey
There is the inevitable tradeoff between accuracy and computational cost. For example
method, in the way it is currently implemented, takes more CPU time (although much
memory!) than the simple scheme of using the Sommerfeld condition on a remote bour
I = rmax- However, the implementation of our method may be made more efficient by
calculating and tabulating, as a preprocess, all the quantities that do not change with
which depend only on a small number of parameters, so that they can be used repe:
and efficiently during future computations; (b) using a small variahlg as explained in
Remark 3 of Section 7; (c) calculating the Fourier coefficief?ﬁsg) and f~fn(§) in (41) by
using FFT; (d) using more effective numerical integration schemes in the exterior (ra
than the trapezoidal rule that we employ); and (e) replacing the fixed-point procedure
more efficient scheme, along the lines of [27].

The nonlinear wave equation (1) has a deceivingly simple form, but the exterior pi
lem already necessitates a quite complicated numerical scheme. Real challenges lie
solution of yet more complex nonlinear exterior wave problems, such as problems of |a
amplitude water waves and nonlinear elastic waves. We shall try to adapt the method de
here to these applications.
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